skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sutavani, Sarang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a data-driven framework to discover underlying dynamics on a scaled F1TENTH vehicle using the Koopman operator linear predictor. Traditionally, a range of white, gray, or black-box models are used to develop controllers for vehicle path tracking. However, these models are constrained to either linearized operational domains, unable to handle significant variability or lose explainability through end-2-end operational settings. The Koopman Extended Dynamic Mode Decomposition (EDMD) linear predictor seeks to utilize data-driven model learning whilst providing benefits like explainability, model analysis and the ability to utilize linear model-based control techniques. Consider a trajectory-tracking problem for our scaled vehicle platform. We collect pose measurements of our F1TENTH car undergoing standard vehicle dynamics benchmark maneuvers with an OptiTrack indoor localization system. Utilizing these uniformly spaced temporal snapshots of the states and control inputs, a data-driven Koopman EDMD model is identified. This model serves as a linear predictor for state propagation, upon which an MPC feedback law is designed to enable trajectory tracking. The prediction and control capabilities of our framework are highlighted through real-time deployment on our scaled vehicle. 
    more » « less